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Results are presented from a study of nonsteady heat exchange in a solar collec- 
tor built into the structure of a building. Analytical expressions are obtained 
which permit modeling thermal processes in such devices. 

Introduction. One of the promising approaches to providing competitive solar heat 
supply systems is the use of so-called "inertial" solar collectors [i]. These devices are 
made in a manner such that the heat collector is in direct contact with a substrate (founda- 
tion, roof, building panel, etc.) and an integral part thereof, combining the functions 
of a solar collector, heat storage device, and structural support. 

Known methods for calculating solar collectors [2] based on the assumption of "zero" 
heat capacity of the collector construction are not always applicable in such cases. This 
is true because the nonsteady character of heat transport into the substrate mass may have 
a significant effect on heat exchange in inertial collectors. 

Thus, heat exchange in an inertial collector must be considered with the substrate mass 
included in the object, which in the final reckoning leads to a complex problem of heat ex- 
change of the liquid circulating in the collector channel with the external medium on the 
one hand, and with the substrate mass on the other. 

In the general case the heat collector of the inertial collector may be of arbitrary 
form, which complicates or makes impossible analytical solution. For engineering calcula- 
tions it is possible in principle to use the nonsteady analog of the solar collector ef- 
ficiency coefficient [3] to reduce the problem of heat exchange in a collector of arbitrary 
form to the problem of heat exchange with a semi-infinite liquid mass moving in a fictitious 
slot channel. 

Mathematical Formulation of the Problem. The object of study is a heat collector with 
a slot channel, located in ideal contact with a semi-infinite mass (Fig. i). In formulating 
the mathematical model a number of assumptions are made, the most basic of which reduce 
to the following: the effect of the channel walls on heat exchange is neglected; transport 
and heat liberation coefficients are constant; as compared to the storage mass the thermo- 
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TABLE i. Forms of Transform Approximations 

Type of 
trans- 
form 

Equilibri- 
um air 
temp. 

Heat ex- 
change 
fluid input 
temp. 

First-order approximation 

K(s, ~)~a~Vsq-b ( . )  
aoVsq-1 

First-order approx, with 
delay term. 

K(~, %)----- k ._exp(_~,o]/-~--)(,, ) 
BI-}-Vs 

O~ (Fo, ~) = 1 -- exp (-- ~) -]- 

�9 -{-.415' / \ 1 - ~ / - -  " B i  F F'--6 / A ~  \-- a-~--] ( Bi VF'-o 1,  

Az= ] 7 ~ { 1  .d-(exp[--~(1-[-q~)]X 
ao o, 0 

exp (--~) [1--exp ( - -~ ) ]  (ao-- A2-- 

01 (Fo, ~ ) = e x p ( - - ~ )  l l - - [ 1 - -  

( B[ )<~ 'il -- exp (-- ~,)] ~o' t ~ J I  ' 

ao = [1 -- exp (-- ~q~)]-]-; 
g (x) = exp (x 2) ergo (x); 

o.~fc (x) = @ i'exp ~ -  ,~) dt 
X 

a ~ *  fro, ~) = I i + 

X \  1 - - - ~ / - - e x p ( - - ~  4Fo /  

Bi )~%'f l l  
+- r4~+  ~ )it ' 

Bi 

X 

a~* (Fo, ~) = exp(-  ~ - - ~ o / x  

f / ~,o ~ / ),o Bi) 'Fo\]  

inertial properties of the heat exchange fluid are negligible; heat transport within the 
mass in the direction of exchange fluid flow is negligibly low. 

With consideration of these assumptions heat exchange in the inertial collector can 
be described by a system of differential equations in partial derivatives characterizing 
heat transport by the liquid and the mass, with matching conditions on the boundary. 

For the mass: 

c)O.__~m = a 2 O ~ .  Om (0, ~, 7) = O; 
0 F o  O~  ' 

aOm I 
OOm = Bi (Orj~ o__ O/)" 

07 r=a '=  

(z) 

For the liquid: 

0Of 
a~ = Oe-- O: - -  cp (Od~=o-- Oj); 

O / ( F o ,  O) = O i n ( F o  ). 
( 2 )  

Solution. By applying a Laplace transform [4] to system (i), (2) we reduce the problem 
to solution of the inhomogeneous differential equation 

with 

. ( (3> 

By (s, O) = ~i~s), 

where Of, Oe, Oin are Laplace transforms of the functions describing change in the tempera- 
ture of the heat exchange fluid, the equilibrium temperature, and the temperature at the 
inertial collector input. 
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TABLE 2. Estimate of Integral Error of Approximation of 
Transcendental form K(s, $) (%) 

Form of K(s, $ ) approximation 

,~0-1/7-+ W1 - (*) 

t ~ ex_p (-Xo -VT) 
IV2 

Bi + -I/~s 
(**) 

Form of K(s, $) approximation 

w1- 
~o ] /7+b (*) 
ao -V7 + 1 

k exp (--%0 ~ ' )  W~ = (**) 
Bi 4 -V's 

I0 

--5,46 - -15 ,65  - -43 ,82  --66,67 

437, 5 425,71 

60 

415,83 

I00 

433,3 

20 40 

--90,48 --93,55 

+3,20 

--96,08 

41,95 

--81,82 

44,70 48,86 

The solution of Eq. 

where 

(3) has the form, known from [5] 

~-," (S, ~) = S~) e (S)~ 1 (S, ~) @ SOin(S) G~. (S, ~), 
(4) 

~V7 
1--exp [--  ~(1 -5 Bi + VTs ) ] 

~l(s ,  D =  ( ' - )  s 1 +  Bi_}_.~/~. " 

is the transform for the disturbance in equilibrium temperature of the external air; 

G~(s, ~ ) = ~ e x p  --~ I +  B i+  
S 

is the transform for the heat exchange fluid input temperature. 

To find the originals of the transforms we use an operational method based on the Efros 
theorem [4] which provides a generalized relationship for calculating the originals. 

The transform for unit change in equilibrium temperature of the external air is 

Gx(Fo, ~) 1-- exp (-- g) exp [--~(1 + qo)] =~ (1__~)" 
(1 + qo) 

x [~(1 + ~o)]~ h=, kl ,.=oZ (2 Bi "V~o) "~ exp (BPFo)i m erfc (Bi -[/~), 
(5) 

where 
i n eric (x) = i i'~-1 eric (y) dy 

x 

is the integral error function [6]. 

The transform for unit change in fluid input temperature is 
n--I 

G~(Fo, ~ ) = e x p ( - - ~ ) - - e x p [ - - ~ ( l + r  2 (~)~ Z (2Bi-V'~)~exp(Bi2F~ (6) 
n = l  tl.l �9 ~ 0  

It is of interest to solve the problem of heat exchange in the inertial collector for a 
known initial temperature distribution in the substrate mass, where @m(0, z) = #0(z). In 
this case the expressions for the transforms (5), (6) remain unchanged, while the inhomo- 
geneous initial temperature distribution in the mass appears in the form of an additional 
heat source, uniform along the channel length, with temperature 
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Fig.  2. Comparison of  t rans fo rms f o r - v a r i o u s  app rox i -  
mat ion forms= a) f o r  u n i t  change i n  e q u i l i b r i u m  a i r  
temperature; b) for unit change in heat exchange fluid 
input temperature: i, exact value; 2, approximate 
transform for K(s, ~) approximation in form (*); 3, 
approximate transform for K(s, ~) approximation in 
form (**). 
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Fig. 3. Change in relative temperature at output 
of "inertial" solar collector Of(z) = Of(~)/(A' 
Esc) for coating heat transfer coefficient ~ = 
8 w/(m='K) and thermal activity coefficient ~ = 
2000 W'secZ/2/(m2"K): i, o~tat(T)=sb~+sin(~T~ x 
~)~(~x--~)j 2, 9f for gc D = i00 W/(m2-K); 3, Of 
for gCp = 40 W/(m2"K); ~, 0f for gCp = i0 W/(m2x 
K). 

@, s (Fo) = i (b~ (~) V (Fo, z) dz, ( 7 
0 

where 

V (Fo, ~ = exp [ - - (  2 "/F-o~ )2][ ll//g Fo Bi exp (Bi~ F~ erfc (Bi I/F-~ ] 

is the source function on the surface of the semi-infinite mass [4]. 

With consideration of Eqs. (5)-(7), on the basis of Duhamel's principle [4] the general 
solution of the heat exchange problem in an inertial collector with arbitrary perturbing 
effects and inhomogeneous temperature field in the substrate has the form 

0 Fo Fo 

Ot(Fo , ~)= 0Fo-{S[Oe(/)+O (t)]Gl(Fo--t , ~)dt-]-!ein(/)G~(Fo--/, ~)dt}. (8) 

Use of the equations obtained for modeling inertial collector operation is inconvenient 
because of their cumbersomeness and the complexity of the calculation procedures, especially 
for long time intervals. 

Approximation. The complex form of the transforms (5), (6) is related to the fact that 
within the space of the transforms the functions in Eq. (4) contain the transcendental form 
K(s, 6) = exp[~Bi/(Bi + r which has no original in closed form. 
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On the basis of the theory of asymptotically equivalent functions [7] and the integral 
evaluation method of [8] various approximations of K(s, ~) were considered (Table i). The 
free coefficients in the approximation expressions were determined by the condition of equality 
of the exact and approximate expressions as s + 0 and s § ~, as well as equality of the 
derivatives s § 0 [8]. The integral evaluation method permits determination of the integral 
error of one or the other approximation without transition to the original from the condition 

~" (P' ~) p=0 8 = i K" (p, ~) ' 

where W(p, ~) is an expression approximating the transcendent form K(p, ~); p = V~s. 

The character of the change in integral error for various approximate forms as a func- 
tion of the regime parameter ~ can be judged from the results presented in Table 2. 

In the majority of practical cases ~ ~ i0, and for such values of the regime parameter 
the best approximation of the exact solution is provided by the first order approximation 
of the form K(s, $) with a delay term, producing not only the lowest values of the integral, 
but also the dynamic error (Fig. 2). 

Studies of transient processes in the inertial collector by the laboratory model showed 
satisfactory convergence of theoretical and experimental results. 

Modeling. For the majority of practical problems in calculating solar apparatus the 
heat exchange agent temperature at the input to the collector can be considered close to 
zero (@in(Z) = 0), while the equilibrium temperature of the outside air is described well 
by a semi-sinusoidal pulse with semiperiod close to the solstice time: 

@e(T) = A sin (~T) [1 - -  a ( ~  - -  a)], 

where A, ~ are the amplitude and frequency of the oscillation; ~(m~ - ~) is a unit Heaviside 
function. 

Modeling results for this case with a comparison of temperature values at the outputs 
of an "inertial" and inertialess (with "zero" heat capacity) solar collectors are shown 
in Fig. 3. For the latter collector the temperature at the output is described by the ex- 
pressi@n known from [2] 

osta~ , i F'U ) ] 
U ) = @ e  (~) I l ' e x p  . gee , 

Analysis of the change in relative temperature values over time of Fig. 3 shows that 
with increase in specific water equivalent gCp the output temperature of the "inertial" 
collector approaches the corresponding value for the inertialess collector. On the other 
hand, with decreas e in gCp the amplitude of oscillations in output temperature of the 
inertial collector decreases, but accumulation of heat in the collector substrate insures 
heating of the transfer fluid in the absence of solar radiation in the period ~ > ~. For 
a very low fluid flow rate a state sets in which practically total extinction in oscillations 
of the fluid temperature is found. 

The limiting states of inertial solar collector operation can be clearly seen from 
a frequency diagram (Fig. 4), in which the collector is interpreted as a low pass filter. 
At oscillation frequencies @p(~) higher than the cutoff frequency the amplitude of tempera- 
ture oscillations at the collector output is close to zero (region I). Region III is char- 
acterized by a quasi-steady operating regime in which the collector can be considered as 
having "zero" heat capacity. The limiting frequencies and operating regimes of the collec- 
tor are then determined to an equal degree by its thermotechnical properties (~ and F'U) 
and the regime parameter gCp. 

Conclusion. The studies of heat exchange in an "inertial" collector performed above 
have obtained exact and approximate expressions for transforms which permit modeling of 
operation for the purpose of optimizing construction and regimeparameters. The solutions 
of Eqs. (5), (6) are applicable in the case of a limited substrate given the condition that 
its thickness b > 2v~a~ [9]. 

NOTATION 

Tm=Tm(~, y, z), temperature of mass; Tf, Tf(~, y), temperature of heat exchange fluid; H(~), 
density of solar radiation absorbed by heat collector; U, thermal loss coefficient of solar 
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Fig. 4. Frequency diagram of "inertial" 
solar collector: i) cutoff range; 2) 
nonsteady heat exchange range; 3) 
quasi-steady heat exchange range. 

collector; Ta(T), external air temperature; T e = Te(%) = H(%)/U + Ta(%) , equilibrium tempera- 
ture of external air; y, z, spatial coordinates; ~, time; a, ~, thermal diffusivity and 
conductivity of mass; ~, heat exchange coefficient between heat exchange fluid and channel; 
F' = ~/(~ + U), efficiency of solar collector with slotted channel; G, mass flow rate of 
heat exchange fluid; c e, heat capacity of heat exchange fluid; W, s width and length of 
heat collector; gce = Gce/Ws specific wate E equivalent of heat exchange fluid; y = y/s 
z = z/s relative spatial coordinates; g = y.F'U/gc e, generalized longitudinal coordinate; 
Bi = ~s Blot number; Fo = a%/s 2 Fourier number; s, Laplace variable; @m Tm To; Oin 
= Tin - To; Of = Tf - To; O e = T e - To; T o , initial temperature of mass; b, plate thickness; 
Esc = l-exp(-F'U/gce) , solar collector efficiency; E, substrate thermal activity coefficient. 
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